
skextremes Documentation

Kiko Correoso

Apr 10, 2022

CONTENTS

1 Dependencies 3

2 Installation 5

3 Support 7

4 License 9

5 Contents: 11
5.1 Quick and incomplete Extreme Value Theory introduction . 11
5.2 User guide . 13
5.3 skextremes.utils . 16
5.4 skextremes.models.wind . 17
5.5 skextremes.models.engineering . 19
5.6 skextremes.models.classic . 25

Python Module Index 31

Index 33

i

ii

skextremes Documentation

scikit-extremes is a python library to perform univariate extreme value calculations.

There are two main classical approaches to calculate extreme values:

• Gumbel/Generalised Extreme Value distribution (GEV) + Block Maxima.

• Generalised Pareto Distribution (GPD) + Peak-Over-Threshold (POT).

CONTENTS 1

skextremes Documentation

2 CONTENTS

CHAPTER

ONE

DEPENDENCIES

To work with scikit-extremes you will need the following libraries:

• Numpy

• Scipy

• Matplotlib

• Numdifftools

3

skextremes Documentation

4 Chapter 1. Dependencies

CHAPTER

TWO

INSTALLATION

At this moment there isn’t an official release. To install the package you can follow the next steps:

lmoments has not been updated in a while so we use the master
(see https://github.com/OpenHydrology/lmoments3/issues/8)
pip install git+https://github.com/OpenHydrology/lmoments3.git

git clone https://github.com/kikocorreoso/scikit-extremes.git

cd scikit-extremes

pip install -e .

5

skextremes Documentation

6 Chapter 2. Installation

CHAPTER

THREE

SUPPORT

If you find a bug, something wrong or want a new feature, please, open a new issue on Github.

If you want to ask about the usage of scikit-extremes or something related with extreme value theory/analysis with
Python you can post a question at stackoverflow tagged with scikit-extremes or skextremes.

7

https://github.com/kikocorreoso/scikit-extremes/issues
http://stackoverflow.com/

skextremes Documentation

8 Chapter 3. Support

CHAPTER

FOUR

LICENSE

This software is licensed under the MIT license except:

• skextremes.utils.bootstrap_ci function that is based on the scikits-bootstrap package licensed under the
Modified BSD License.

The MIT License (MIT)

Copyright (c) [2015] [Kiko Correoso]

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

9

https://github.com/cgevans/scikits-bootstrap

skextremes Documentation

10 Chapter 4. License

CHAPTER

FIVE

CONTENTS:

5.1 Quick and incomplete Extreme Value Theory introduction

Extreme Value Theory (EVT) is unique as a statistical discipline in that it develops techniques and models for describing
the unusual rather than the usual, e.g., it is focused in the tail of the distribution.

By definition, extreme values are scarce, meaning that estimates are often required for levels of a process that are
much greater than have already been observed. This implies an extrapolation from an small set of observed levels to
unobserved levels. Extreme Value Theory provides models to enable such extrapolation.

5.1.1 Fields of interest

Applications of extreme value theory include predicting the probability distribution of:

• Several engineering design processes:

• Hydraulics engineering (extreme floods,. . .)

• Structural engineering (earthquakes, wind speed,. . .)

• Meteorology

• Extreme temperatures, rainfall, Hurricanes. . .

• Ocean engineering

• The size of freak waves (wave height)

• Environmental sciences

• Large wildfires

• Environmental loads on structures

• Insurance industry

• The amounts of large insurance losses, portfolio adjustment,. . .

• Financial industry

• Equity risks

• Day to day market risk

• Stock market crashes

• Material sciences

• Corrosion analysis

11

skextremes Documentation

• Strenght of materials

• Telecommunications

• Traffic prediction

• Biology

• Mutational events during evolution

• Memory cell failure

• . . .

5.1.2 A brief history of Extreme Value Theory

One of the earliest books on the statistics of extreme values is E.J. Gumbel (1958). Research into extreme values as a
subject in it’s own right began between 1920 and 1940 when work by E.L. Dodd, M. Frêchet, E.J. Gumbel, R. von Mises
and L.H.C. Tippett investigated the asymptotic distribution of the largest order statistic. This led to the main theoretical
result: the Extremal Types Theorem (also known as the Fisher–Tippett–Gnedenko theorem, the Fisher–Tippett theorem
or the extreme value theorem) which was developed in stages by Fisher, Tippett and von Mises, and eventually proved
in general by B. Gnedenko in 1943.

Until 1950, development was largely theoretical. In 1958, Gumbel started applying theory to problems in engineering.
In the 1970s, L. de Haan, Balkema and J. Pickands generalised the theoretical results (the second theorem in extreme
value theory), giving a better basis for statistical models.

Since the 1980s, methods for the application of Extreme Value Theory have become much more widespread.

5.1.3 General approaches to estimate extreme values

There are two primary approaches to analyzing extremes of a dataset:

• The first and more classical approach reduces the data considerably by taking maxima of long blocks of data,
e.g., annual maxima. The generalized extreme value (GEV) distribution function has theoretical justification for
fitting to block maxima of data.

• The second approach is to analyze excesses over a high threshold. For this second approach the generalized
Pareto (GP) distribution function has similar justification for fitting to excesses over a high threshold.

Block-Maxima + Generalised Extreme Value (GEV) and Gumbel distribution

The generalized extreme value (GEV) family of distribution functions has theoretical support for fitting to block max-
imum data whereby the blocks are sufficiently large, and is given by:

𝐺(𝑧;𝜇, 𝜎, 𝜉) = 𝑒𝑥𝑝{−[1 + 𝜉
𝑧 − 𝜇

𝜎
]−1/𝜉}

The parameters 𝜇 (−∞ < 𝜇 < ∞), 𝜎 (𝜎 > 0) and 𝜉 (∞ < 𝜉 < ∞) are location, scale and shape parameters,
respectively. The value of the shape parameter 𝜉 differentiates between the three types of extreme value distribution
in Extremal Types Theorem (also known as the Fisher–Tippett–Gnedenko theorem, the Fisher–Tippett theorem or the
extreme value theorem).

• 𝜉 = 0, leading to, corresponds to the Gumbel distribution (type I). This special case can be formulated as

𝐺(𝑧;𝜇, 𝜎) = 𝑒𝑥𝑝{−𝑒𝑥𝑝(
𝑧 − 𝜇

𝜎
)}

• 𝜉 > 0 correspond to the Frêchet (type II) and

12 Chapter 5. Contents:

http://www.worldcat.org/title/statistics-of-extremes/oclc/180577
http://www.statslab.cam.ac.uk/~rjs57/ExtremalTThm.pdf
https://en.wikipedia.org/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem
https://en.wikipedia.org/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem
https://en.wikipedia.org/wiki/Pickands%E2%80%93Balkema%E2%80%93de_Haan_theorem
http://www.statslab.cam.ac.uk/~rjs57/ExtremalTThm.pdf

skextremes Documentation

• 𝜉 < 0 correspond to the Weibull (type III)

distributions respectively. In practice, when we estimate the shape parameter 𝜉, the standard error for 𝜉 accounts for
our uncertainty in choosing between the three models.

Peak-Over-Threshold (POT) + Generalised Pareto (GP) distribution

TODO

TODO

TODO

TODO

5.1.4 References used to prepare this section

• S. Coles (2001): *An introduction to statistical modelling of extreme values*. Springer.

• E. Gilleland, , M. Ribatet and A. G. Stephenson (2013): *A software review for extreme value analysis*. Ex-
tremes, 16 (1), 103 - 119.

• L. Fawcett (2013): *Teaching materials of MAS8391 at Newcastle University (UK)*.

5.2 User guide

First of all you should import the package:

import skextremes as ske
import matplotlib.pyplot as plt
%matplotlib inline

Some datasets are included in the package. For example, we will use sea level data from Port Pirie, in Australia.

data = ske.datasets.portpirie()

print(data.description)

Annual Maximum Sea Levels at Port Pirie, South Australia
--

Fields:
year: numpy.array defining the year for the row data.
sea_level: numpy.array defining annual maximum sea level recorded at

Port Pirie, South Australia.

Source:
-Coles, S. G. (2001). An Introduction to Statistical Modelling of

Extreme Values. London: Springer.

As can be seen from the description of the dataset we have two fields, sea_level, with the annual maximum sea level
records, and year, indicating the year of the record.

5.2. User guide 13

http://www.springer.com/us/book/9781852334598
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10687-012-0155-0
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10687-012-0155-0
http://www.mas.ncl.ac.uk/~nlf8/teaching/mas8391/

skextremes Documentation

To get the dataset we can use the .asarray method to obtain all the fields as a numpy.array or just select a field to
get a 1D numpy.array with the records for the field.

data_array = data.asarray()
sea_levels = data.fields.sea_level

print(sea_levels)

[4.03 3.83 3.65 3.88 4.01 4.08 4.18 3.8 4.36 3.96 3.98 4.69
3.85 3.96 3.85 3.93 3.75 3.63 3.57 4.25 3.97 4.05 4.24 4.22
3.73 4.37 4.06 3.71 3.96 4.06 4.55 3.79 3.89 4.11 3.85 3.86
3.86 4.21 4.01 4.11 4.24 3.96 4.21 3.74 3.85 3.88 3.66 4.11
3.71 4.18 3.9 3.78 3.91 3.72 4. 3.66 3.62 4.33 4.55 3.75
4.08 3.9 3.88 3.94 4.33]

We have several options, located in the skextremes.models subpackage, to calculate extreme values. Depending the
chosen model some methods and attributes will be available.

Models are divided in several packages:

• wind: Some very basic functions to calculate wind extreme values obtained from the Wind Energy industry.
These are very basic approximations based on parameters of wind data and should only be used to calculate the
expected wind speed value for a 50 years return period.

• engineering: Basic models found in the literature based, mainly, on the Gumbel distribution and the Block
Maxima approach.

• classic: A more classical approach from the theory to obtain extreme values using fitting accepted distributions
generally used in the extreme value theory.

model = ske.models.engineering.Lieblein(sea_levels)

Once the model is fitted you can see the results:

model.plot_summary()

(<matplotlib.figure.Figure at 0xf449d70>,
<matplotlib.axes._subplots.AxesSubplot at 0x4632f70>,
<matplotlib.axes._subplots.AxesSubplot at 0x466a410>,
<matplotlib.axes._subplots.AxesSubplot at 0x4693410>)

14 Chapter 5. Contents:

skextremes Documentation

To see, for instance, the parameters obtained you can use:

print(model.c, model.loc, model.scale)

0 3.86774852633 0.198420194778

Another approach would be to use a more classic model:

model = ske.models.classic.GEV(sea_levels, fit_method = 'mle', ci = 0.05,
ci_method = 'delta')

d:usersX003621AppDataLocalContinuumMiniconda3libsite-packagesnumdifftoolscore.py:753:␣
→˓UserWarning: The stepsize (3.16814) is possibly too large!
warnings.warn('The stepsize (%g) is possibly too large!' % h1[i])

d:usersX003621AppDataLocalContinuumMiniconda3libsite-packagesnumdifftoolscore.py:753:␣
→˓UserWarning: The stepsize (0.18069) is possibly too large!
warnings.warn('The stepsize (%g) is possibly too large!' % h1[i])

d:usersX003621AppDataLocalContinuumMiniconda3libsite-packagesnumdifftoolscore.py:753:␣
→˓UserWarning: The stepsize (0.278302) is possibly too large!
warnings.warn('The stepsize (%g) is possibly too large!' % h1[i])

d:usersX003621AppDataLocalContinuumMiniconda3libsite-packagesnumdifftoolscore.py:753:␣
→˓UserWarning: The stepsize (0.0664633) is possibly too large!
warnings.warn('The stepsize (%g) is possibly too large!' % h1[i])

model.params

OrderedDict([('shape', 0.050109518363545352),
('location', 3.8747498425529501),
('scale', 0.19804394476624812)])

model.plot_summary()
plt.show()

5.2. User guide 15

skextremes Documentation

5.3 skextremes.utils

This module provides utility functions that are used within scikit-extremes that are also useful for external consumption.

skextremes.utils.bootstrap_ci(data, statfunction=<function average>, alpha=0.05, n_samples=100)
Given a set of data data, and a statistics function statfunction that applies to that data, computes the bootstrap
confidence interval for statfunction on that data. Data points are assumed to be delineated by axis 0.

This function has been derived and simplified from scikits-bootstrap package created by cgevans (https://github.
com/cgevans/scikits-bootstrap). All the credits shall go to him.

Parameters

data [array_like, shape (N, . . .) OR tuple of array_like all with shape (N, . . .)] Input data. Data points are
assumed to be delineated by axis 0. Beyond this, the shape doesn’t matter, so long as statfunction can
be applied to the array. If a tuple of array_likes is passed, then samples from each array (along axis 0) are
passed in order as separate parameters to the statfunction. The type of data (single array or tuple of arrays)
can be explicitly specified by the multi parameter.

statfunction [function (data, weights = (weights, optional)) -> value] This function should accept samples of
data from data. It is applied to these samples individually.

alpha [float, optional] The percentiles to use for the confidence interval (default=0.05). The returned values are
(alpha/2, 1-alpha/2) percentile confidence intervals.

16 Chapter 5. Contents:

https://github.com/cgevans/scikits-bootstrap
https://github.com/cgevans/scikits-bootstrap

skextremes Documentation

n_samples [int or float, optional] The number of bootstrap samples to use (default=100)

Returns

confidences [tuple of floats] The confidence percentiles specified by alpha

Calculation Methods

‘pi’ [Percentile Interval (Efron 13.3)] The percentile interval method simply returns the 100*alphath bootstrap
sample’s values for the statistic. This is an extremely simple method of confidence interval calculation.
However, it has several disadvantages compared to the bias-corrected accelerated method.

If you want to use more complex calculation methods, please, see scikits-bootstrap package.

References

Efron (1993): ‘An Introduction to the Bootstrap’, Chapman & Hall.

skextremes.utils.gev_momfit(data)
Estimate parameters of Generalised Extreme Value distribution using the method of moments. The methodology
has been extracted from appendix A.4 on EVA (see references below).

Parameters

data [array_like] Sample extreme data

Returns

tuple tuple with the shape, location and scale parameters. In this, case, the shape parameter is always 0.

References

DHI, (2003): ‘EVA(Extreme Value Analysis - Reference manual)’, DHI.

skextremes.utils.gum_momfit(data)
Estimate parameters of Gumbel distribution using the method of moments. The methodology has been extracted
from Wilks (see references below).

Parameters

data [array_like] Sample extreme data

Returns

tuple tuple with the shape, location and scale parameters. In this, case, the shape parameter is always 0.

References

Wilks,D.S. (2006): ‘Statistical Methods in the Atmospheric Sciences, second edition’, Academic
Press.

5.4 skextremes.models.wind

This module contains algorithms found in the literature and used extensively in wind energy engineering as standard
methods.

For more information visit:

https://www.ecn.nl/publications/ECN-C–98-096

https://webstore.iec.ch/preview/info_iec61400-1%7Bed3.0%7Den.pdf

5.4. skextremes.models.wind 17

https://github.com/cgevans/scikits-bootstrap
http://www.tnmckc.org/upload/document/wup/1/1.3/Manuals/MIKE%2011/eva/EVA_RefManual.pdf
http://store.elsevier.com/Statistical-Methods-in-the-Atmospheric-Sciences/Daniel-Wilks/isbn-9780080456225/
https://www.ecn.nl/publications/ECN-C--98-096
https://webstore.iec.ch/preview/info_iec61400-1%7Bed3.0%7Den.pdf

skextremes Documentation

skextremes.models.wind.wind_EWTSII_Davenport(vave, k, T=50, n=23037)
Algorithm appeared in the European Wind Turbine Standards II (EWTS II). Davenport variation.

It uses 10-minute wind speeds to obtain the return period extreme wind speed for the T return period defined.

Parameters

vave [float or int] Long term mean wind speed

k [float or int] Weibull k parameter as defined in the wind industry. To obtain the k parameter using scipy have
a look here. The c parameter in scipy is the k equivalent in the wind industry.

T [float or int] Return period in years. Default value is 50 (years).

n [floar or int] the number of independent events per year. Default value is 23037 for 10-min time steps and 1-yr
extrema.

Returns

vref [float] Expected extreme wind speed at the return period defined.

References

Dekker JWM, Pierik JTG (1998): ‘European Wind Turbine Standards II’, ECN-C-99-073, ECN Solar
& Wind Energy, Netherlands.

skextremes.models.wind.wind_EWTSII_Exact(vave, k, T=50, n=23037)
Algorithm appeared in the European Wind Turbine Standards II (EWTS II). Exact variation.

It uses 10-minute wind speeds to obtain the return period extreme wind speed for the T return period defined.

Parameters

vave [float or int] Long term mean wind speed

k [float or int] Weibull k parameter as defined in the wind industry. To obtain the k parameter using scipy have
a look here. The c parameter in scipy is the k equivalent in the wind industry.

T [float or int] Return period in years. Default value is 50 (years).

n [floar or int] the number of independent events per year. Default value is 23037 for 10-min time steps and 1-yr
extrema.

Returns

vref [float] Expected extreme wind speed at the return period defined.

References

Dekker JWM, Pierik JTG (1998): ‘European Wind Turbine Standards II’, ECN-C-99-073, ECN Solar
& Wind Energy, Netherlands.

skextremes.models.wind.wind_EWTSII_Gumbel(vave, k, T=50, n=23037)
Algorithm appeared in the European Wind Turbine Standards II (EWTS II). Gumbel variation.

It uses 10-minute wind speeds to obtain the return period extreme wind speed for the T return period defined.

Parameters

vave [float or int] Long term mean wind speed

k [float or int] Weibull k parameter as defined in the wind industry. To obtain the k parameter using scipy have
a look here. The c parameter in scipy is the k equivalent in the wind industry.

T [float or int] Return period in years. Default value is 50 (years).

18 Chapter 5. Contents:

http://stackoverflow.com/questions/17481672/fitting-a-weibull-distribution-using-scipy/17498673#17498673
http://stackoverflow.com/questions/17481672/fitting-a-weibull-distribution-using-scipy/17498673#17498673
http://stackoverflow.com/questions/17481672/fitting-a-weibull-distribution-using-scipy/17498673#17498673
http://stackoverflow.com/questions/17481672/fitting-a-weibull-distribution-using-scipy/17498673#17498673
http://stackoverflow.com/questions/17481672/fitting-a-weibull-distribution-using-scipy/17498673#17498673
http://stackoverflow.com/questions/17481672/fitting-a-weibull-distribution-using-scipy/17498673#17498673

skextremes Documentation

n [floar or int] the number of independent events per year. Default value is 23037 for 10-min time steps and 1-yr
extrema.

Returns

vref [float] Expected extreme wind speed at the return period defined.

References

Dekker JWM, Pierik JTG (1998): ‘European Wind Turbine Standards II’, ECN-C-99-073, ECN Solar
& Wind Energy, Netherlands.

skextremes.models.wind.wind_vref_5vave(vave, factor=5)
It calculates the 50 year return expected maximum wind speed as 5 times the long term average wind speed.

It uses 10-minute wind speeds to obtain the 50-year return period extreme wind speed.

Parameters

vave [float or int] Long term mean wind speed

factor [float or int] Factor used to obtain vref. Default value is 5.

Returns

vref [float] vref wind speed, i.e., 50 years expected maximum wind speed in the same units used by the vave
input parameter.

5.5 skextremes.models.engineering

This module contains algorithms found in the literature and used extensively in some fields.

The following paragraphs have been adapted from Makonnen, 2006

The return period of an event of a specific large magnitude is of fundamental interest. All evaluations of the risks of
extreme events require methods to statistically estimate their return periods from the measured data. Such methods
are widely used in building codes and regulations concerning the design of structures and community planning, as
examples. Furthermore, it is crucial for the safety and economically optimized engineering of future communities to
be able to estimate the changes in the frequency of various natural hazards with climatic change, and analyzing trends
in the weather extremes.

The return period 𝑅 (in years) of an event is related to the probability 𝑃 of not exceeding this event in one year by

𝑅 =
1

1− 𝑃

A standard method to estimate 𝑅 from measured data is the following. One first ranks the data, typically annual
extremes or values over a threshold, in increasing order of magnitude from the smallest 𝑚 = 1 to the largest 𝑚 = 𝑁
and associates a cumulative probability 𝑃 to each of the mth smallest values. Second, one fits a line to the ranked
values by some fitting procedure. Third, one interpolates or extrapolates from the graph so that the return period of the
extreme value of interest is estimated.

Basically, this extreme value analysis method, introduced by Hazen (1914), can be applied directly by using arithmetic
paper. However, interpolation and extrapolation can be made more easily when the points fall on a straight line, which
is rarely the case in an order-ranked plot of a physical variable on arithmetic paper. Therefore, almost invariably, the
analysis is made by modifying the scale of the probability 𝑃 , and sometimes also that of the random variable 𝑥, in such
a way that the plot against 𝑥 of the anticipated cumulative distribution function 𝑃 = 𝐹 (𝑥) of the variable appears as a
straight line. Typically, the Gumbel probability paper (Gumbel 1958) is used because in many cases the distribution of
the extremes, each selected from r events, asymptotically approaches the Gumbel distribution when 𝑟 goes to infinity.

5.5. skextremes.models.engineering 19

http://journals.ametsoc.org/doi/pdf/10.1175/JAM2349.1

skextremes Documentation

class skextremes.models.engineering.Harris1996(data=None, ppp='Harris1996', **kwargs)
Calculate extreme values based on yearly maxima using Harris1996 plotting positions and a least square fit.

This methodology differ from others in the module in the location of the probability plotting position.

Parameters

data [array_like] Extreme values dataset.

preconditioning [int or float] You can choose to apply an exponent to the extreme data values before performing
the Gumbel curve fit. Preconditioning can often improve the convergence of the curve fit and therefore
improve the estimate T-year extreme wind speed. Default value is 1.

Attributes

results [dict] A dictionary containing different parameters of the fit.

c [float] Value of the ‘shape’ parameter. In the case of the Gumbel distribution this value is always 0.

loc [float] Value of the ‘localization’ parameter.

scale [float] Value os the ‘scale’ parameter.

distr [frozen scipy.stats.gumbel_r distribution] Frozen distribution of type scipy.stats.gumbel_rwith
c, loc and scale parameters equal to self.c, self.loc and self.scale, respectively.

Methods

Methods to calculate the fit:

_ppp_harris1996

Methods to plot results:

self.plot_summary()

_ppp_harris1996()

Review of the traditional Gumbel extreme value method for analysing yearly maximum windspeeds or
similar data, with a view to improving the process. An improved set of plotting positions based on the
mean values of the order statistics are derived, together with a means of obtaining the standard deviation
of each position. This enables a fitting procedure using weighted least squares to be adopted, which gives
results similar to the traditional Lieblein BLUE process, but with the advantages that it does not require
tabulated coefficients, is available for any number of data up to at least 50, and provides a quantitative
measure of goodness of fit.

References

Harris RI, (1996), ‘Gumbel re-visited – a new look at extreme value statistics applied to wind
speeds’, Journal of Wind Engineering and Industrial Aerodynamics, 59, 1-22.

plot_summary()

Summary plot including PP plot, QQ plot, empirical and fitted pdf and return values and periods.

Returns

4-panel plot including PP, QQ, pdf and return level plots

class skextremes.models.engineering.Lieblein(data=None, ppp='Lieblein', **kwargs)
Calculate extreme values based on yearly maxima using Lieblein plotting positions and a least square fit.

This methodology differ from others in the module in the location of the probability plotting position.

Parameters

data [array_like] Extreme values dataset.

20 Chapter 5. Contents:

skextremes Documentation

preconditioning [int or float] You can choose to apply an exponent to the extreme data values before performing
the Gumbel curve fit. Preconditioning can often improve the convergence of the curve fit and therefore
improve the estimate T-year extreme wind speed. Default value is 1.

Attributes

results [dict] A dictionary containing different parameters of the fit.

c [float] Value of the ‘shape’ parameter. In the case of the Gumbel distribution this value is always 0.

loc [float] Value of the ‘localization’ parameter.

scale [float] Value os the ‘scale’ parameter.

distr [frozen scipy.stats.gumbel_r distribution] Frozen distribution of type scipy.stats.gumbel_rwith
c, loc and scale parameters equal to self.c, self.loc and self.scale, respectively.

Methods

Methods to calculate the fit:

_ppp_lieblein

Methods to plot results:

self.plot_summary()

_ppp_lieblein()

Lieblein-BLUE (Best Linear Unbiased Estimator) to obtain extreme values using a Type I (Gumbel) extreme
value distribution.

It approaches the calculation of extremes using a very classical methodology provided by Julius Lieblein.
It exists just to check how several consultants made the calculation of wind speed extremes in the wind
energy industry.

It calculates extremes using an adjustment of Gumbel distribution using least squares fit and considering
several probability-plotting positions used in the wild.

References

Lieblein J, (1974), ‘Efficient methods of Extreme-Value Methodology’, NBSIR 74-602, National
Bureau of Standards, U.S. Department of Commerce.

plot_summary()

Summary plot including PP plot, QQ plot, empirical and fitted pdf and return values and periods.

Returns

4-panel plot including PP, QQ, pdf and return level plots

class skextremes.models.engineering.PPPLiterature(data=None, ppp='Weibull', **kwargs)
Calculate extreme values based on yearly maxima using several plotting positions and a least square fit.

This methodology differ from others in the module in the location of the probability plotting position.

Parameters

data [array_like] Extreme values dataset.

preconditioning [int or float] You can choose to apply an exponent to the extreme data values before performing
the Gumbel curve fit. Preconditioning can often improve the convergence of the curve fit and therefore
improve the estimate T-year extreme wind speed. Default value is 1.

Attributes

results [dict] A dictionary containing different parameters of the fit.

5.5. skextremes.models.engineering 21

skextremes Documentation

c [float] Value of the ‘shape’ parameter. In the case of the Gumbel distribution this value is always 0.

loc [float] Value of the ‘localization’ parameter.

scale [float] Value os the ‘scale’ parameter.

distr [frozen scipy.stats.gumbel_r distribution] Frozen distribution of type scipy.stats.gumbel_rwith
c, loc and scale parameters equal to self.c, self.loc and self.scale, respectively.

Methods

Methods to calculate the fit:

_ppp_adamowski

_ppp_beard

_ppp_blom

_ppp_gringorten

_ppp_hazen

_ppp_hirsch

_ppp_iec56

_ppp_landwehr

_ppp_laplace

_ppp_mm

_ppp_tukey

_ppp_weibull

Methods to plot results:

self.plot_summary()

_ppp_adamowski()

Perform the calculations using the Adamowski method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 0.25

𝑁 + 0.5

References

De, M., 2000. A new unbiased plotting position formula for gumbel distribution. Stochastic Envir.
Res. Risk Asses., 14: 1-7.

_ppp_beard()

Perform the calculations using the Beard method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 0.31

𝑁 + 0.38

References

De, M., 2000. A new unbiased plotting position formula for gumbel distribution. Stochastic Envir.
Res. Risk Asses., 14: 1-7.

22 Chapter 5. Contents:

skextremes Documentation

_ppp_blom()

Perform the calculations using the Blom method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 0.375

𝑁 + 0.25

References

De, M., 2000. A new unbiased plotting position formula for gumbel distribution. Stochastic Envir.
Res. Risk Asses., 14: 1-7.

_ppp_gringorten()

Perform the calculations using the Gringorten method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 0.44

𝑁 + 0.12

References

Adeboye, O.B. and M.O. Alatise, 2007. Performance of probability distributions and plotting
positions in estimating the flood of River Osun at Apoje Sub-basin, Nigeria. Agric. Eng. Int.:
CIGR J., Vol. 9.

_ppp_hazen()

Perform the calculations using the Hazen method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 0.5

𝑁

References

Adeboye, O.B. and M.O. Alatise, 2007. Performance of probability distributions and plotting
positions in estimating the flood of River Osun at Apoje Sub-basin, Nigeria. Agric. Eng. Int.:
CIGR J., Vol. 9.

_ppp_hirsch()

Perform the calculations using the Hirsch method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1) + 0.5

𝑁 + 1

References

Jay, R.L., O. Kalman and M. Jenkins, 1998. Integrated planning and management for Urban water
supplies considering multi uncertainties. Technical Report, Department of Civil and Environmen-
tal Engineering, Universities of California.

_ppp_iec56()

Perform the calculations using the IEC56 method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 0.5

𝑁 + 0.25

References

5.5. skextremes.models.engineering 23

skextremes Documentation

Forthegill, J.C., 1990. Estimating the cumulative probability of failure data points to be plotted
on weibull and other probability paper. Electr. Insulation Transact., 25: 489-492.

_ppp_landwehr()

Perform the calculations using the Landwehr method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 0.35

𝑁

References

Makkonen, L., 2008. Problem in the extreme value analysis. Structural Safety, 30: 405-419.

_ppp_laplace()

Perform the calculations using the Laplace method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1) + 1

𝑁 + 2

References

Jay, R.L., O. Kalman and M. Jenkins, 1998. Integrated planning and management for Urban water
supplies considering multi uncertainties. Technical Report, Department of Civil and Environmen-
tal Engineering, Universities of California.

_ppp_mm()

Perform the calculations using the McClung and Mears method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 0.4

𝑁

References

Makkonen, L., 2008. Problem in the extreme value analysis. Structural Safety, 30: 405-419.

_ppp_tukey()

Perform the calculations using the Tukey method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1)− 1/3

𝑁 + 1/3

References

Makkonen, L., 2008. Problem in the extreme value analysis. Structural Safety, 30: 405-419.

_ppp_weibull()

Perform the calculations using the Weibull method available for the probability positions.

Probability positions are defined as:

𝑃 =
(𝑁 + 1) + 1

𝑁 + 1

References

Hynman, R.J. and Y. Fan, 1996. Sample quantiles in statistical packages. Am. Stat., 50: 361-365.

24 Chapter 5. Contents:

skextremes Documentation

plot_summary()

Summary plot including PP plot, QQ plot, empirical and fitted pdf and return values and periods.

Returns

4-panel plot including PP, QQ, pdf and return level plots

5.6 skextremes.models.classic

Module containing classical generalistic models

Gumbel: To be used applying the Block Maxima approach

Generalised extreme value distribution (GEV): To be used applying the Block Maxima approach

Generalised Pareto Distribution (GPD): To be used applying the Peak-Over-Threshold approach TODO

class skextremes.models.classic.GEV(data, fit_method='mle', ci=0, ci_method=None,
return_periods=None, frec=1)

Class to fit data to a Generalised extreme value (GEV) distribution.

Parameters

data [array_like] 1D array_like with the extreme values to be considered

fit_method [str] String indicating the method used to fit the distribution. Availalable values are ‘mle’ (default
value), ‘mom’ and ‘lmoments’.

ci [float (optional)] Float indicating the value to be used for the calculation of the confidence interval. The
returned values are (ci/2, 1-ci/2) percentile confidence intervals. E.g., a value of 0.05 will return confidence
intervals at 0.025 and 0.975 percentiles.

ci_method [str (optional)] String indicating the method to be used to calculate the confidence intervals. If ci
is not supplied this parameter will be ignored. Possible values depend of the fit method chosen. If the fit
method is ‘mle’ possible values for ci_method are ‘delta’ and ‘bootstrap’, if the fit method is ‘mom’ or
‘lmoments’ possible value for ci_method is ‘bootstrap’.

‘delta’ is for delta method. ‘bootstrap’ is for parametric bootstrap.

return_period [array_like (optional)] 1D array_like of values for the return period. Values indicate years.

frec [int or float] Value indicating the frecuency of events per year. If frec is not provided the data will be treated
as yearly data (1 value per year).

Attributes and Methods

params [OrderedDict] Ordered dictionary with the values of the shape, location and scale parameters of the
distribution.

c [flt] Float value for the shape parameter of the distribution.

loc [flt] Float value for the location parameter of the distribution.

scale [flt] Float value for the scale parameter of the distribution.

distr [object] Frozen RV object with the same methods of a continuous scipy distribution but holding the given
shape, location, and scale fixed. See http://docs.scipy.org/doc/scipy/reference/stats.html for more info.

data [array_like] Input data used for the fit

fit_method [str] String indicating the method used to fit the distribution, values can be ‘mle’, ‘mom’ or ‘lmo-
ments’.

5.6. skextremes.models.classic 25

http://docs.scipy.org/doc/scipy/reference/stats.html

skextremes Documentation

cdf(quantiles)
Cumulative distribution function of the given frozen RV.

Parameters

x [array_like] quantiles

Returns

cdf [ndarray] Cumulative distribution function evaluated at x

pdf(quantiles)
Probability density function at x of the given frozen RV.

Parameters

x [array_like] quantiles

Returns

pdf [ndarray] Probability density function evaluated at x

plot_density()

Histogram of the empirical pdf data and the pdf plot of the fitted distribution. All parameters are predefined
from the frozen fitted model and empirical data available.

Returns

Density plot.

plot_pp()

PP (probability) plot between empirical and fitted data. All parameters are predefined from the frozen fitted
model and empirical data available.

Returns

PP plot.

plot_qq()

QQ (Quantile-Quantile) plot between empirical and fitted data. All parameters are predefined from the
frozen fitted model and empirical data available.

Returns

QQ plot.

plot_return_values()

Return values and return periods of data. If confidence interval information has been provided it will show
the confidence interval values.

Returns

Return values and return periods plot.

plot_summary()

Summary plot including PP plot, QQ plot, empirical and fitted pdf and return values and periods.

Returns

4-panel plot including PP, QQ, pdf and return level plots

ppf(q)
Percent point function (inverse of cdf) at q of the given frozen RV.

Parameters

26 Chapter 5. Contents:

skextremes Documentation

q [array_like] lower tail probability

Returns

x [array_like] quantile corresponding to the lower tail probability q.

stats(moments)
Some statistics of the given RV.

Parameters

moments [str, optional] composed of letters [‘mvsk’] defining which moments to compute: ‘m’ = mean,
‘v’ = variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s) kurtosis. (default=’mv’)

Returns

stats [sequence] of requested moments.

class skextremes.models.classic.Gumbel(data, fit_method='mle', ci=0, ci_method=None,
return_periods=None, frec=1)

Class to fit data to a Gumbel distribution. Note that this is a special case of the GEV class where the ‘shape’ is
fixed to 0.

Parameters

data [array_like] 1D array_like with the extreme values to be considered

fit_method [str] String indicating the method used to fit the distribution. Availalable values are ‘mle’ (default
value), ‘mom’ and ‘lmoments’.

ci [float (optional)] Float indicating the value to be used for the calculation of the confidence interval. The
returned values are (ci/2, 1-ci/2) percentile confidence intervals. E.g., a value of 0.05 will return confidence
intervals at 0.025 and 0.975 percentiles.

ci_method [str (optional)] String indicating the method to be used to calculate the confidence intervals. If ci
is not supplied this parameter will be ignored. Possible values depend of the fit method chosen. If the fit
method is ‘mle’ possible values for ci_method are ‘delta’ and ‘bootstrap’, if the fit method is ‘mom’ or
‘lmoments’ possible value for ci_method is ‘bootstrap’.

‘delta’ is for delta method. ‘bootstrap’ is for parametric bootstrap.

return_period [array_like (optional)] 1D array_like of values for the return period. Values indicate years.

frec [int or float] Value indicating the frecuency of events per year. If frec is not provided the data will be treated
as yearly data (1 value per year).

Attributes and Methods

params [OrderedDict] Ordered dictionary with the values of the shape, location and scale parameters of the
distribution.

c [flt] Float value for the shape parameter of the distribution.

loc [flt] Float value for the location parameter of the distribution.

scale [flt] Float value for the scale parameter of the distribution.

distr [object] Frozen RV object with the same methods of a continuous scipy distribution but holding the given
shape, location, and scale fixed. See http://docs.scipy.org/doc/scipy/reference/stats.html for more info.

data [array_like] Input data used for the fit

fit_method [str] String indicating the method used to fit the distribution, values can be ‘mle’, ‘mom’ or ‘lmo-
ments’.

5.6. skextremes.models.classic 27

http://docs.scipy.org/doc/scipy/reference/stats.html

skextremes Documentation

cdf(quantiles)
Cumulative distribution function of the given frozen RV.

Parameters

x [array_like] quantiles

Returns

cdf [ndarray] Cumulative distribution function evaluated at x

pdf(quantiles)
Probability density function at x of the given frozen RV.

Parameters

x [array_like] quantiles

Returns

pdf [ndarray] Probability density function evaluated at x

plot_density()

Histogram of the empirical pdf data and the pdf plot of the fitted distribution. All parameters are predefined
from the frozen fitted model and empirical data available.

Returns

Density plot.

plot_pp()

PP (probability) plot between empirical and fitted data. All parameters are predefined from the frozen fitted
model and empirical data available.

Returns

PP plot.

plot_qq()

QQ (Quantile-Quantile) plot between empirical and fitted data. All parameters are predefined from the
frozen fitted model and empirical data available.

Returns

QQ plot.

plot_return_values()

Return values and return periods of data. If confidence interval information has been provided it will show
the confidence interval values.

Returns

Return values and return periods plot.

plot_summary()

Summary plot including PP plot, QQ plot, empirical and fitted pdf and return values and periods.

Returns

4-panel plot including PP, QQ, pdf and return level plots

ppf(q)
Percent point function (inverse of cdf) at q of the given frozen RV.

Parameters

28 Chapter 5. Contents:

skextremes Documentation

q [array_like] lower tail probability

Returns

x [array_like] quantile corresponding to the lower tail probability q.

stats(moments)
Some statistics of the given RV.

Parameters

moments [str, optional] composed of letters [‘mvsk’] defining which moments to compute: ‘m’ = mean,
‘v’ = variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s) kurtosis. (default=’mv’)

Returns

stats [sequence] of requested moments.

class skextremes.models.classic.GPD(data, fit_method='mle', ci=0, ci_method=None,
return_periods=None, frec=1)

5.6. skextremes.models.classic 29

skextremes Documentation

30 Chapter 5. Contents:

PYTHON MODULE INDEX

s
skextremes.models.classic, 25
skextremes.models.engineering, 19
skextremes.models.wind, 17
skextremes.utils, 16

31

skextremes Documentation

32 Python Module Index

INDEX

Symbols
_ppp_adamowski() (skex-

tremes.models.engineering.PPPLiterature
method), 22

_ppp_beard() (skextremes.models.engineering.PPPLiterature
method), 22

_ppp_blom() (skextremes.models.engineering.PPPLiterature
method), 22

_ppp_gringorten() (skex-
tremes.models.engineering.PPPLiterature
method), 23

_ppp_harris1996() (skex-
tremes.models.engineering.Harris1996
method), 20

_ppp_hazen() (skextremes.models.engineering.PPPLiterature
method), 23

_ppp_hirsch() (skex-
tremes.models.engineering.PPPLiterature
method), 23

_ppp_iec56() (skextremes.models.engineering.PPPLiterature
method), 23

_ppp_landwehr() (skex-
tremes.models.engineering.PPPLiterature
method), 24

_ppp_laplace() (skex-
tremes.models.engineering.PPPLiterature
method), 24

_ppp_lieblein() (skex-
tremes.models.engineering.Lieblein method),
21

_ppp_mm() (skextremes.models.engineering.PPPLiterature
method), 24

_ppp_tukey() (skextremes.models.engineering.PPPLiterature
method), 24

_ppp_weibull() (skex-
tremes.models.engineering.PPPLiterature
method), 24

B
bootstrap_ci() (in module skextremes.utils), 16

C
cdf() (skextremes.models.classic.GEV method), 25
cdf() (skextremes.models.classic.Gumbel method), 27

G
GEV (class in skextremes.models.classic), 25
gev_momfit() (in module skextremes.utils), 17
GPD (class in skextremes.models.classic), 29
gum_momfit() (in module skextremes.utils), 17
Gumbel (class in skextremes.models.classic), 27

H
Harris1996 (class in skextremes.models.engineering),

19

L
Lieblein (class in skextremes.models.engineering), 20

M
module

skextremes.models.classic, 25
skextremes.models.engineering, 19
skextremes.models.wind, 17
skextremes.utils, 16

P
pdf() (skextremes.models.classic.GEV method), 26
pdf() (skextremes.models.classic.Gumbel method), 28
plot_density() (skextremes.models.classic.GEV

method), 26
plot_density() (skextremes.models.classic.Gumbel

method), 28
plot_pp() (skextremes.models.classic.GEV method), 26
plot_pp() (skextremes.models.classic.Gumbel method),

28
plot_qq() (skextremes.models.classic.GEV method), 26
plot_qq() (skextremes.models.classic.Gumbel method),

28
plot_return_values() (skex-

tremes.models.classic.GEV method), 26

33

skextremes Documentation

plot_return_values() (skex-
tremes.models.classic.Gumbel method),
28

plot_summary() (skextremes.models.classic.GEV
method), 26

plot_summary() (skextremes.models.classic.Gumbel
method), 28

plot_summary() (skex-
tremes.models.engineering.Harris1996
method), 20

plot_summary() (skex-
tremes.models.engineering.Lieblein method),
21

plot_summary() (skex-
tremes.models.engineering.PPPLiterature
method), 24

ppf() (skextremes.models.classic.GEV method), 26
ppf() (skextremes.models.classic.Gumbel method), 28
PPPLiterature (class in skex-

tremes.models.engineering), 21

S
skextremes.models.classic

module, 25
skextremes.models.engineering

module, 19
skextremes.models.wind

module, 17
skextremes.utils

module, 16
stats() (skextremes.models.classic.GEV method), 27
stats() (skextremes.models.classic.Gumbel method), 29

W
wind_EWTSII_Davenport() (in module skex-

tremes.models.wind), 17
wind_EWTSII_Exact() (in module skex-

tremes.models.wind), 18
wind_EWTSII_Gumbel() (in module skex-

tremes.models.wind), 18
wind_vref_5vave() (in module skex-

tremes.models.wind), 19

34 Index

	Dependencies
	Installation
	Support
	License
	Contents:
	Quick and incomplete Extreme Value Theory introduction
	Fields of interest
	A brief history of Extreme Value Theory
	General approaches to estimate extreme values
	Block-Maxima + Generalised Extreme Value (GEV) and Gumbel distribution
	Peak-Over-Threshold (POT) + Generalised Pareto (GP) distribution

	References used to prepare this section

	User guide
	skextremes.utils
	skextremes.models.wind
	skextremes.models.engineering
	skextremes.models.classic

	Python Module Index
	Index

